

Data Evaluation for ¹⁹F, ³⁵Cl, ³⁷Cl, ²⁴¹Pu, ²³⁸U, and Gd Isotopes

Luiz Leal, Herve Derrien, Royce Sayer, Nancy Larson Nuclear Data Group Nuclear Science and Technology Division Oak Ridge National Laboratory

> CSEWG Brookhaven National Laboratory November 4-6, 2003

³⁵Cl and ³⁷Cl Resonance Evaluation

Nuclear Science and Technology Division

Features:

- Total cross section, capture cross section, and (n,p) cross section data measurements were used in the evaluation.
- Evaluation performed up to 1.2 MeV.
- 380 s- and p-wave. 244 for ³⁵Cl and 136 for ³⁷Cl.
- SAMMY: Reich-Moore formalism was used.
- Charge particle (n,p) exit channel not accommodated in existing ENDF format: Format modification proposed !!

Chlorine Cross Section

Chlorine Cross Section

Comparison with ENDF

Comparison with ENDF

¹⁹F Evaluation

Nuclear Science and Technology Division

Experimental Data

- Three Transmission Data Measurements of Larson *et al.* made at ORELA 80 meters flight path with sample thicknesses 0.13093 at/b, 0.016886 at/b, and 0.024184 at/b, respectively in the energy range 5 ev to 20 MeV.
- One Capture measurement done at ORELA 40 meters flight path performed by Guber *et al.* up to 700 KeV;
- Inelastic Cross Section Measurements Performed by Broder *et al.* at Obninsk up to 1 MeV. (Format modification proposed)

Transmission

Total and Capture Cross Sections

Inelastic Cross Sections

Comparison with ENDF evaluation

Comparison with ENDF evaluation

Direct Capture Cross Section for 19F

Nuclear Science and Technology Division

SAMMY allows the fit of the direct capture component of the cross section as suggested by Kerman and Dietrich

Total Capture = resonance component + direct capture component

$$\sigma_{\gamma}^{tot} = \sigma_{\gamma}^{res}(E_n, \Gamma_n, \Gamma_{\gamma}) + C \times \sigma_{\gamma}^{direct}$$

- Model calculations by Goran Arbanas, ORNL
- Analysis by Luiz Leal, ORNL
 - Multiplier initially at 1.0, fitted to 0.547

²⁴¹Pu Evaluation

Nuclear Science and Technology Division

Motivation

- Investigation of the French Post-Irradiation Experiments (PIE) on PWR Indicates Significant Underestimation of the ²⁴¹Pu Capture Cross Section;
- Underestimation in the build-up prediction of ²⁴³Am, ²⁴⁴Cm, and ²⁴⁵Cm;

The Evaluation was performed in the energy range thermal to 20 eV;

Paper submitted to Nuclear Science and Engineering.

²⁴¹Pu Evaluation

Nuclear Science and Technology Division

Experimental Data Bank

- Weston fission and capture data (1976);
- Wagemans fission data (1991);
- Young and Smith total cross section (1968);

All data normalized in the energy range 0.01 eV to 1 eV according to Wagemans fission and Young total cross section.

Results

	$\overline{}$
(NS	TN)
(143)	روا

E _r 0.26 eV	meV	n meV	fi meV	neV
1988	32.555	0.04371	-78.04	-0.481
1993	33.350	0.04252	-50.42	25.36
This Work	34.630	0.04367	-42.71	32.06

Results

E _r 0.0253 eV	Standard (barns)	Present work (barns)
Fission	1012.68 ± 6.58	1012.20
Capture	361.29 ± 4.95	363.0
Scattering	12.17 ± 2.62	11.3
Total	1386.14 ± 8.64	1386.5

Results

(C/E-1 in % using JEF2.2, JENDL3.2, and ORNL evaluation)

		Nuclear Science	ce and Technology Divi	sion (NSTD)
BU (Gwd/t)	26.9	38.4	50.3	59.8
Pu241/U238(JEF2.2)	-6.3 ± 2.3	-5.0 ± 1.8	-3.8 ± 1.6	-3.1 ± 1.6
Pu242/U238(JEF2.2)	-10.5 ± 4.0	-9.7 ± 3.4	-8.8 ± 3.1	-8.6 ± 2.8
Am243/U238(JEF2.2)	-18.0 ± 6.2	-11.6 ± 5.2		-8.8 ± 4.4
Pu241/U238(JENDL3.2)	-5.4 ± 2.3	-3.8 ± 1.8	-2.5 ± 1.6	-1.6 ± 1.6
Pu242/U238(JENDL3.2)	-9.0 ± 4.0	-7.9 ± 3.4	-6.8 ± 3.1	-6.4 ± 2.8
Am243/U238(JENDL3.2)	-16.6 ± 6.2	-9.9 ± 5.2		-6.8 ± 4.4
Pu241/U238(ORNL)	-5.9 ± 2.3	-4.4 ± 1.8	-3.1 ± 1.6	-2.4 ± 1.6
Pu242/U238(ORNL)	-5.2 ± 4.0	-4.3 ± 3.4	-3.2 ± 3.1	-2.9 ± 2.8
Am243/U238(ORNL)	-12.8 ± 6.2	-6.5 ± 5.2		-3.7 ± 4.4

²³⁸U Evaluation

- Resonance Analysis done in the Energy Region From 10⁻⁵ eV to 20 keV;
- Two Sets of Resonance Parameters: 0 to 10 keV and 10 keV to 20 keV;
- ENDF/B-VI Resonance Parameters below 10 keV were used for Starting Values;
- Extension of the ENDF/B-VI Resolved Resonance Region from 10 keV up to 20 keV;
- Evaluation done with the Reich-Moore formalism in the code SAMMY;
- High Resolution Data of Harvey et al. and Capture Cross Section Data of DeSaussure were used.
- Accurate Self-Shielding and Multiple Scattering Correction for Capture Data were done with an Improved Version of SAMMY;

Energy Range 1 keV to 10 keV

- Starting with the ENDF/B-VI Resonance Parameters (Moxon-Sowerby Evaluation);
- Experimental Data Used:
 - Olsen transmission data (1977) (four thicknesses)
 - -Harvey Transmission Data: Three thicknesses: 0.1748, 0.0396, and 0.0125 atoms/b; Data measured at ORELA on the 200 m flight path
 - Capture Data of DeSaussure measured at ORELA on the 40 m flight path

Results for the evaluation energy region 1 keV to 10 keV

- Modification of the external resonance parameters for accurate description of the transmission data between resonances. The average scattering cross section increases by 2.8 %;
- Scattering Radius of 9.450 fm in agreement with the Olsen ORNL Evaluation;
- Better description of the Capture data. The average capture cross section increases by 3.8 % in the energy range 1 keV to 10 keV;

Average ²³⁸U Cross Sections (1 keV to 10 keV)

NI1	0-:	J T 1 1 -	ov Division

				019
Energy Range	Captu	Capture (b)		c (b)
(keV)	ENDF/B-VI	ORNL	ENDF/B-VI	ORNL
1 – 2	1.87	1.94	21.68	22.25
2-3	1.36	1.41	21.57	22.12
3 – 4	1.15	1.20	19.82	20.36
4-5	0.88	0.89	14.79	15.03
5 – 6	0.90	0.90	14.20	14.38
6 – 7	0.87	0.88	16.66	16.37
7 – 8	0.68	0.74	13.79	14.07
8 – 9	0.63	0.65	15.03	15.71
9 – 10	0.65	0.71	13.07	13.89
1 - 10	1.00	1.04	16.73	17.12

Energy Range 10 keV to 20 keV

- No prior values of the resonance parameters existed;
- Experimental Data Used:
 - Harvey Transmission Data: Three thicknesses: 0.1748, 0.0396, and 0.0125 atoms/b; Data measured at ORELA on the 200 m flight path
 - Capture Data of DeSaussure measured at ORELA on the 40 m flight path

Results for the evaluation energy region 10 keV to 20 keV

- 457 s-wave resonances and 1228 p-wave resonances obtained with SAMMY analysis of Harvey transmission data and DeSaussure Capture cross section data
- The average capture cross section agrees with the ENDF/B-VI evaluation;
- The average elastic cross section is larger than the ENDF/B-VI evaluation by 3.1 %;

Effective Total Cross Section from the Transmission Data (upper curve x 100, middle curve x 10)

Effective Capture Cross Sections

Average ²³⁸U Cross Sections (10 keV to 20 keV)

		Nuclear Science and Tec	chnology Division	NSTD)
Energy Range	Capt	ure (b)	Elas	tic (b)
(keV)	ENDF/B-VI	ORNL	ENDF/B-VI	ORNL
10 – 11	0.71	0.68	14.67	14.72
11 – 12	0.68	0.65	14.53	13.91
12 – 13	0.66	0.65	14.40	15.32
13 – 14	0.64	0.72	14.29	14.56
14 – 15	0.62	0.62	14.18	15.54
15 – 16	0.60	0.58	14.09	14.60
16 – 17	0.58	0.58	14.01	13.79
17 – 18	0.57	0.58	13.93	16.25
18 – 19	0.55	0.53	13.86	14.57
19 - 20	0.54	0.52	13.79	12.91
10 - 20	0.615	0.611	14.17	14.62

Statistical Properties of Resonance Parameters in the Energy Range 10 keV to 20 keV

- Number of Resonances used to fit the data are 457 s-wave and 1228 p-wave;
- Below 10 keV ENDF/B evaluation uses 473 s-wave and 1228 p-wave:
- Spin Assignment:
 - -Large resonances are assigned s-wave from their shape;
 - -Small resonances are distributed among 3 families: s-wave, p-wave p1/2 and p3/2 following the 2J+1 spin dependence of the population;

Distribution of s-wave Level Spacings

Distribution of p-wave Level Spacings

Porter-Thomas Distribution of s-wave neutron widths

Porter-Thomas Distribution of p-wave neutron widths

Neutron Strength Functions

ORNL Results	ENDF/B-VI
10 keV to 20 keV	From Thermal to 10 keV
S_0	\mathbf{S}_0
$(1.120 \pm 0.074) 10^{-4}$	$(0.947 \pm 0.07) \ 10^{-4}$
S_1	S_1
$(1.693 \pm 0.068) 10^{-4}$	$(1.577 \pm 0.06) \ 10^{-4}$

Benchmark results using ²³⁸U ORNL Evaluation

Nuclear Science and Technology Division

Thermal benchmark (Leu-Comp-Therm Series)

Thermal Benchmark Experiments Performed at the Tank-type Critical Assembly TCA facility (JAERI, Japan) from 1963 to 1975

TCA

Tank-type Critical Assembly, light water moderated and fueled with low enriched uranium (2.6 wt % of UO₂) with a size of 1.8m in diameter and 2m long, controlled by reactor core water level. The water to fuel volume ratio ranges from 1.5 to 3.0

Benchmark Results

- Calculations done with MCNP4C code
- Base library used was the ENDF/B-VI release Five
- Calculations done with 1000 histories per cycle with 3000 cycles
- Two sets of results:
 - a) Calculations with MCNP library based on ENDF/B-VI.5
 - b) Calculations with MCNP library based on ENDF/B-VI.5 replacing ²³⁸U evaluation with ORNL evaluation

Benchmark Results

Case	ENDF/B-VI.5	ENDF/B-VI.5 with ²³⁸ U ORNL Evaluation
LCT-01	0.99276 ± 0.00043	0.99506 ± 0.00043
LCT-02	0.99359 ± 0.00042	0.99429 ± 0.00043
LCT-03	0.99245 ± 0.00044	0.99568 ± 0.00042
LCT-04	0.99376 ± 0.00042	0.99534 ± 0.00041
LCT-05	0.99383 ± 0.00043	0.99471 ± 0.00042
LCT-06	0.99345 ± 0.00043	0.99654 ± 0.00042
LCT-07	0.99400 ± 0.00042	0.99604 ± 0.00042
LCT-08	0.99358 ± 0.00043	0.99610 ± 0.00043
LCT-09	0.99429 ± 0.00042	0.99582 ± 0.00041
LCT-10	0.99502 ± 0.00042	0.99767 ± 0.00041
LCT-11	0.99535 ± 0.00041	0.99704 ± 0.00041
LCT-12	0.99472 ± 0.00041	0.99619 ± 0.00042
LCT-13	0.99420 ± 0.00042	0.99557 ± 0.00042

Benchmark Results

Nuclear Science and Technology Division

Case	ENDF/B-VI.5	ENDF/B-VI.5 with ²³⁸ U ORNL Evaluation
Average	0.99392	0.99585
	±	±
	0.00042	0.00042

An improvement of 193 pcm On average!!

Gd Evaluation ¹⁵²Gd, ¹⁵⁴Gd, ¹⁵⁵Gd, ¹⁵⁶Gd, ¹⁵⁷Gd, ¹⁵⁸Gd, and ¹⁶⁰Gd

- Resolved and Unresolved Resonance Evaluations Revised
 - MLBW resonance parameters converted to RM parameters;
 - Unresolved resonance evaluation done with SAMMY: Average SLBW parameters obtained.
 - SAMMY used to reevaluate the RM parameters.
- Resolved and Unresolved Resonance Covariance Evaluation done with SAMMY
 - Uncertainty in the Resonance Parameters reported on "Mughabghab's Book" used as input;
 - "Typical" data uncertainty on "data" were used. Example: ORELA resolution function, TOF uncertainties, channel widths, jitters, etc.
- Use SAMMY Retroactive Scheme to Generate Covariance Data.

